Metallacarboranes and triple-decker complexes with the $\left(\mathrm{C}_{4} \mathrm{Me}_{4}\right) \mathrm{Pt}$ fragment

Dmitry A. Loginov, Zoya A. Starikova, Elena A. Petrovskaya, Alexander R. Kudinov*
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow GSP-1, Russian Federation

A R T I C L E I N F O

Article history:

Received 22 May 2008
Received in revised form 3 September 2008
Accepted 22 September 2008
Available online 27 September 2008

Keywords:

Metallacarboranes
Iron
Platinum
Rhodium
Triple-decker complexes

Abstract

Complex $\mathrm{Cb}^{*} \mathrm{PtCl}_{2}\left(\mathrm{Cb}^{*}=\eta-\mathrm{C}_{4} \mathrm{Me}_{4}\right)$ reacts with the carborane anions $\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]^{2-}$ and $\left[9-\mathrm{SMe}_{2}-7,8-\right.$ $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right]^{-}$giving platinacarboranes $\mathrm{Cb}^{*} \mathrm{Pt}\left(\eta-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)(\mathbf{1})$ and $\left[\mathrm{Cb}{ }^{*} \mathrm{Pt}\left(\eta-9-\mathrm{SMe}_{2}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\right]^{+}(\mathbf{2})$, respectively. Reactions of the $\left[\mathrm{Cb}^{*} \mathrm{Pt}\right]^{2+}$ fragment (as a labile nitromethane solvate) with the sandwich compounds $\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Me}_{2} \mathrm{BMe}\right)$ and $\mathrm{Cp}^{*} \mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BPh}\right)$ afford the triple-decker cations [Cb* $\operatorname{Pt}(\mu$ $\left.\left.\eta: \eta-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Me}_{2} \mathrm{BMe}\right) \mathrm{FeCp}^{*}\right]^{2+}(\mathbf{3})$ and $\left[\mathrm{Cb}^{*} \mathrm{Pt}\left(\mu-\eta^{5}: \eta^{5}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BPh}\right) \mathrm{RhCp}^{*}\right]^{2+}(4)$ with bridging boratabenzene and borole ligands. The structures of $\mathbf{1}$ and $\mathbf{3}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ were determined by X-ray diffraction.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The fragments $\left[\mathrm{Cp}^{*} \mathrm{M}\right]^{2+}(\mathrm{M}=\mathrm{Rh}, \mathrm{Ir})$ are widely used in organometallic synthesis [1]. In particular, using these fragments a number of metallacarboranes [2-5] and triple-decker complexes [6-8] have been prepared. In contrast, chemistry of the related fragment $\left[\mathrm{Cb}^{*} \mathrm{Pt}\right]^{2+}\left(\mathrm{Cb}^{*}=\eta-\mathrm{C}_{4} \mathrm{Me}_{4}\right)$ is notably less developed. In 1975, Canziani and Malatesta have described a two-step procedure for the preparation of the chloride complex $\mathrm{Cb}^{*} \mathrm{PtCl}_{2}$ from $(\mathrm{CO})_{2} \mathrm{PtCl}_{2}$ and 2 -butyne in 47% yield [9]. Moreto and Maitlis have synthesized this compound in 60% yield using more available acetonitrile complex $(\mathrm{MeCN})_{2} \mathrm{PtCl}_{2}$ instead of $(\mathrm{CO})_{2} \mathrm{PtCl}_{2}$ [10]. The chloride $\mathrm{Cb}^{*} \mathrm{PtCl}_{2}$ has been proven to be a useful synthon of the $\left[\mathrm{Cb}^{*} \mathrm{Pt}\right]^{2+}$ fragment [11]. In particular, Herberich et al. have synthesized the sandwich cations $\left[\mathrm{Cb}^{*} \mathrm{PtCp}\right]^{+}$and $\left[\mathrm{Cb}^{*} \mathrm{Pt}\left(\eta-\mathrm{C}_{6} \mathrm{Me}_{6}\right)\right]^{2+}$ via the intermediate solvate complex $\left[\mathrm{Cb}^{*} \mathrm{Pt}\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{3}\right]^{2+}[12]$. Herein we report the synthesis and structures of the first $\mathrm{Cb}^{*} \mathrm{Pt}$-containing metallacarborane and triple-decker complexes.

2. Results and discussion

2.1. Synthesis

We found that reactions of $\mathrm{Cb}^{*} \mathrm{PtCl}_{2}$ with the carborane anions $\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]^{2-}$ and $\left[9-\mathrm{SMe}_{2}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right]^{-}$afford complexes $\mathbf{1}$

[^0](71\%) and 2 (17\%) (Scheme 1). ${ }^{1}$ The low yield of 2 may be caused by a side demethylation of the SMe_{2} group [13].

Electrophilic stacking of sandwich compounds with [(ring)M] $]^{n+}$ fragments is an effective method for the preparation of cationic tri-ple-decker complexes [14]. In particular, complexes with bifa-cially-bonded boratabenzene $[6,15]$ and borole $[8,16]$ ligands have been prepared by this way. Using the stacking reaction of $\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Me}_{2} \mathrm{BMe}\right)$ with the labile solvate $\left[\mathrm{Cb}^{*} \mathrm{Pt}(\mathrm{MeNO})_{3}\right]^{2+}$ we synthesized the μ-boratabenzene triple-decker complex 3 (17\%) (Scheme 2). Similar reaction of $\mathrm{Cp}{ }^{*} \mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BPh}\right)$ affords the μ-borole cation 4 (64\%). The low yield of 3 may be explained by easy oxidation of $\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Me}_{2} \mathrm{BMe}\right)$ in contrast to $C p^{*} \mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BPh}\right)$. The solvate complex $\left[\mathrm{Cb}^{*} \mathrm{Pt}\left(\mathrm{MeNO}_{2}\right)_{3}\right]^{2+}$ was generated by treatment of $\mathrm{Cb}^{*} \mathrm{PtCl}_{2}$ with Ag^{+}in nitromethane. It should be emphasized, that cations $\mathbf{3}$ and $\mathbf{4}$ are the first examples of stable $\mathrm{Cb}^{*} \mathrm{Pt}$-containing triple-decker complexes. Herberich et al. have described earlier the formation of the thermally unstable μ cyclopentadienyl cation $\left[\mathrm{Cb}^{*} \operatorname{Pt}(\mu-\eta: \eta-\mathrm{Cp}) \mathrm{FeCp}^{*}\right]^{2+}$ which was detected only by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $0^{\circ} \mathrm{C}[14 \mathrm{~b}]$. Greater stability of triple-decker complexes with bridging boron heterocycles is a general tendency associated with favorable balance of donor and acceptor properties of these ligands.

2.2. X-ray diffraction study

The structures of the metallacarborane complex 1 and the tri-ple-decker cation 3 are shown in Figs. 1 and 2. Selected bond

[^1]
$i=\mathrm{TI}\left[\mathrm{TI}\left(\eta-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right] / \mathrm{MeCN}$
$i i=\mathrm{Na}\left[9-\mathrm{SMe}_{2}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right] / \mathrm{THF}$
Scheme 1.

3

$$
\begin{aligned}
& i=\mathrm{Cp} * \mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Me}_{2} \mathrm{BMe}\right) \\
& i i=\mathrm{Cp}{ }^{\star} \mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BPh}\right)
\end{aligned}
$$

Scheme 2.
lengths and angles are given in Tables. 1 and 2. The dihedral angle between the C_{4} and $\mathrm{C}_{2} \mathrm{~B}_{3}$ planes in $\mathbf{1}$ is equal to 4.7°. In the case of $\mathbf{3}$ the crystallographic cell contains two independent molecules; data for only one of them will be used in further discussion. Cation $\mathbf{3}$ is formed by three cyclic frames ($\mathrm{C}_{4}, \mathrm{C}_{5} \mathrm{~B}$, and $\mathrm{C}_{2} \mathrm{~B}_{3}$); the dihedral angle $\mathrm{C}_{4} / \mathrm{C}_{5} \mathrm{~B}\left(6.3^{\circ}\right)$ is somewhat larger than $\mathrm{C}_{5} \mathrm{~B} / \mathrm{C}_{5}\left(2.7^{\circ}\right)$. We have shown earlier, that the metal-to-ring Co $\cdots \mathrm{C}_{4}$ distance in $\mathrm{Cb}^{*} \mathrm{Co}$ complexes is strongly dependent on donor-acceptor ability of other ligands at the Co atom [17]. In contrast, the Pt $\cdots \mathrm{C}_{4}$ distance

Fig. 1. Structure of complex 1. Atoms are represented by 50% thermal ellipsoids.

Fig. 2. Structure of cation 3. Atoms are represented by 50% thermal ellipsoids.

Table 1
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for compound 1

$\operatorname{Pt}(1)-\mathrm{C}(1)$	$2.246(6)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.457(9)$
$\mathrm{Pt}(1)-\mathrm{C}(2)$	$2.247(7)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.471(10)$
$\mathrm{Pt}(1)-\mathrm{C}(3)$	$2.108(6)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.466(9)$
$\mathrm{Pt}(1)-\mathrm{C}(4)$	$2.188(6)$	$\mathrm{C}(3)-\mathrm{C}(6)$	$1.467(10)$
$\mathrm{Pt}(1)-\mathrm{C}(5)$	$2.160(7)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.622(10)$
$\mathrm{Pt}(1)-\mathrm{C}(6)$	$2.099(7)$	$\mathrm{C}(1)-\mathrm{B}(4)$	$1.736(10)$
$\mathrm{Pt}(1)-\mathrm{B}(4)$	$2.219(8)$	$\mathrm{C}(2)-\mathrm{B}(7)$	$1.737(10)$
$\mathrm{Pt}(1)-\mathrm{B}(7)$	$2.240(8)$	$\mathrm{B}(4)-\mathrm{B}(8)$	$1.827112)$
$\mathrm{Pt}(1)-\mathrm{B}(8)$	$2.226(7)$	$\mathrm{B}(7)-\mathrm{B}(8)$	$1.844(10)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$89.8(5)$	$\mathrm{C}(2)-\mathrm{B}(7)-\mathrm{B}(8)$	$104.7(5)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$90.0(6)$	$\mathrm{B}(7)-\mathrm{B}(8)-\mathrm{B}(4)$	$106.1(5)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(3)$	$89.6(5)$	$\mathrm{B}(8)-\mathrm{B}(4)-\mathrm{C}(1)$	$104.7(5)$
$\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)$	$90.6(6)$	$\mathrm{B}(4)-\mathrm{C}(1)-\mathrm{C}(2)$	$112.6(6)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{B}(7)$	$111.8(5)$		

Table 2
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for cation 3

$\mathrm{Pt}(1)-\mathrm{C}(1)$	$2.364(4), 2.392(4)$	$\mathrm{Fe}(1)-\mathrm{C}(17)$	$2.058(4), 2.073(4)$
$\mathrm{Pt}(1)-\mathrm{C}(2)$	$2.457(4), 2.475(4)$	$\mathrm{Fe}(1)-\mathrm{C}(18)$	$2.073(4), 2.071(4)$
$\mathrm{Pt}(1)-\mathrm{C}(3)$	$2.489(5), 2.483(5)$	$\mathrm{Fe}(1)-\mathrm{C}(19)$	$2.071(4), 2.062(4)$
$\mathrm{Pt}(1)-\mathrm{C}(4)$	$2.462(4), 2.418(4)$	$\mathrm{Fe}(1)-\mathrm{C}(20)$	$2.068(4), 2.068(4)$
$\mathrm{Pt}(1)-\mathrm{C}(5)$	$2.373(4), 2.326(4)$	$\mathrm{Fe}(1)-\mathrm{C}(21)$	$2.068(4), 2.074(5)$
$\mathrm{Pt}(1)-\mathrm{B}(1)$	$2.376(5), 2.373(5)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.436(6), 1.450(6)$
$\mathrm{Pt}(1)-\mathrm{C}(9)$	$2.116(4), 2.109(4)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.454(6), 1.443(6)$
$\mathrm{Pt}(1)-\mathrm{C}(10)$	$2.147(4), 2.130(4)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.447(6), 1.452(6)$
$\mathrm{Pt}(1)-\mathrm{C}(11)$	$2.179(5), 2.176(5)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.445(6), 1.428(6)$
$\mathrm{Pt}(1)-\mathrm{C}(12)$	$2.134(4), 2.125(4)$	$\mathrm{B}(1)-\mathrm{C}(1)$	$1.557(6), 1.547(7)$
$\mathrm{Fe}(1)-\mathrm{C}(1)$	$2.136(4), 2.146(4)$	$\mathrm{B}(1)-\mathrm{C}(5)$	$1.564(7), 1.573(6)$
$\mathrm{Fe}(1)-\mathrm{C}(2)$	$2.079(4), 2.088(4)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.459(6), 1.462(6)$
$\mathrm{Fe}(1)-\mathrm{C}(3)$	$2.059(5), 2.060(5)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.460(6), 1.456(6)$
$\mathrm{Fe}(1)-\mathrm{C}(4)$	$2.070(5), 2.079(4)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.459(6), 1.443(6)$
$\mathrm{Fe}(1)-\mathrm{C}(5)$	$2.140(4), 2.139(4)$	$\mathrm{C}(9)-\mathrm{C}(12)$	$1.480(6), 1.460(6)$
$\mathrm{Fe}(1)-\mathrm{B}(1)$	$2.218(5), 2.219(5)$		
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120.9(4), 121.0(4)$	$\mathrm{B}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$122.5(4), 122.1(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120.8(4), 120.9(4)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$90.9(4), 89.6(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$121.5(4), 121.2(4)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$89.9(4), 90.5(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{B}(1)$	$121.5(4), 122.0(4)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(9)$	$90.1(3), 90.2(4)$
$\mathrm{C}(1)-\mathrm{B}(1)-\mathrm{C}(5)$	$112.8(4), 112.8(4)$	$\mathrm{C}(12)-\mathrm{C}(9)-\mathrm{C}(10)$	$89.1(4), 89.6(4)$

Table 3
Crystallographic data and structure refinement parameters for $\mathbf{1}$ and $\mathbf{3}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$

Compound	$\mathbf{1}$	$\mathbf{3}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$
Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{23} \mathrm{~B}_{9} \mathrm{Pt}$	$\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{BF}_{6} \mathrm{FeO}_{6} \mathrm{PtS}_{2}$
Molecular weight	435.66	908.44
Crystal colour, habit	White prism	Yellow prism
Crystal size (mm)	$0.40 \times 0.25 \times 0.20$	$0.45 \times 0.03 \times 0.03$
Crystal system	Monoclinic	Triclinic
Space group	$P 2_{1} / n$	$P \overline{1}$
$a(\AA)$	$7.0157(15)$	$8.5609(10)$
$b(\AA)$	$17.601(4)$	$17.541(2)$
$c(\AA)$	$13.152(3)$	$21.572(3)$
$\alpha\left({ }^{\circ}\right)$	90	$97.264(2)$
$\beta\left({ }^{\circ}\right)$	$101.594(18)$	$90.184(2)$
$\gamma\left({ }^{\circ}\right)$	90	$91.228(2)$
$V\left(\AA^{3}\right)$	$1590.9(6)$	$3212.6(7)$
Z	4	4
$D_{\text {calc }}\left(\mathrm{g}\right.$ cm $\left.{ }^{-3}\right)$	1.819	1.878
$T(\mathrm{~K})$	163	100
θ Range $\left({ }^{\circ}\right)$	$3.18-26.00$	$0.95-29.00$
$\mu\left(\right.$ cm $\left.{ }^{-3}\right)$	87.97	50.06
Absorption correction		$\mathrm{Multi-scan}$
$T_{\text {max }} / T_{\text {min }}$		$0.8643 / 0.2116$
Collected reflections	6317	60184
Independent reflections $\left(R_{\text {int }}\right)$	$2978(0.0945)$	$17059(0.0775)$
Observed reflections $(I>2 \sigma(I))$	2486	12220
Parameters	181	835
$R_{1}($ on F for observed reflections)	0.0420	0.0352
$w R_{2}\left(\right.$ on F^{2} for all reflections)	0.1075	0.0662
Weighting scheme	$w^{1}=\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(a P)^{2}$, where $P=1 / 3\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right)$	
a	0.0652	0.0105
$F(000)$	824	1788
Goodness-of-fit	0.988	0.952
Largest difference in	2.154 and -3.820	1.389 and -1.185
peak and hole (e $\left.\AA{ }^{\AA 3}\right)$		

is only weakly dependent on auxiliary ligands. For example, these distances in $\mathbf{1}(1.868 \AA)$ and $\mathbf{3}(1.875 \AA$) are very close to those in $\mathrm{Cb}^{*} \mathrm{PtCl}_{2}(1.869 \AA[18])$ and $\left[\mathrm{Cb}{ }^{*} \mathrm{Pt}\left(\eta-\mathrm{C}_{6} \mathrm{Me}_{6}\right)\right]^{2+}(1.873 \AA[12])$.

Usually, $\mathrm{M}-\mathrm{B}$ bonds are considerably longer than $\mathrm{M}-\mathrm{C}$ bonds [15b] in accordance with larger covalent radius of boron versus carbon. However, in the triple-decker cation 3 the $\mathrm{Pt}-\mathrm{B}(1)$ bond ($2.376 \AA$) is shorter than $\mathrm{Pt}-\mathrm{C}(3)(2.489 \AA)$. In the metallacarborane complex 1 the Pt-B bonds (2.219-2.240 \AA, av. $2.23 \AA$) are also shorter than the Pt-C bonds (2.246-2.247 Å, av. $2.25 \AA$). Similar pattern has been observed earlier for other dicarbollide complexes of platinum, e.g. $\left(\mathrm{PEt}_{3}\right)_{2} \operatorname{Pt}\left(\eta-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)$ and $(\operatorname{cod}) \operatorname{Pt}(\eta-7,8-$ $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)$ [19,20].

3. Conclusion

The chloride $\mathrm{Cb}^{*} \mathrm{PtCl}_{2}$ was shown to be very useful for the synthesis of complexes with boron-containing ligands. Its reactions with carborane anions afford (cyclobutadiene)platinacarboranes. Electrophilic stacking of sandwich compounds with $\left[\mathrm{Cb}^{*} \mathrm{Pt}(\mathrm{Me}-\right.$ $\left.\left.\mathrm{NO}_{2}\right)_{3}\right]^{2+}$ (generated by treatment of $\mathrm{Cb}^{*} \mathrm{PtCl}_{2}$ with Ag^{+}) gives plat-inum-containing triple-decker complexes.

4. Experimental

4.1. General

All reactions were carried out under an inert atmosphere in dry solvents. The isolation of products was conducted in air. The starting materials $\mathrm{Cb}^{*} \mathrm{PtCl}_{2}[10], \mathrm{Tl}\left[\mathrm{Tl}\left(\eta-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right][21], \mathrm{Na}\left[9-\mathrm{SMe}_{2}-\right.$ $\left.7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right] \quad$ [22], $\quad \mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Me}_{2} \mathrm{BMe}\right) \quad$ [6,23], $\quad \mathrm{Cp}{ }^{*} \mathrm{Rh}\left(\eta^{5}-\right.$ $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BPh}$) [16e] and AgBF_{4} - 3dioxane [24] were prepared as described in the literature. ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (δ in ppm) were recorded on a Bruker Avance-400 spectrometer (${ }^{1} \mathrm{H} 400.13$;
${ }^{11} \mathrm{~B} 128.38 \mathrm{MHz}$) relative to residual protons of the solvents $\left({ }^{1} \mathrm{H}\right)$ or $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left({ }^{11} \mathrm{~B}\right.$, external standard).

4.2. Synthesis of $C b^{*} \operatorname{Pt}\left(\eta-7,8-C_{2} B_{9} H_{11}\right)(\mathbf{1})$

Acetonitrile (1 ml) was added to a mixture of complex $\mathrm{Cb}^{*} \mathrm{PtCl}_{2}$ ($60 \mathrm{mg}, \quad 0.160 \mathrm{mmol}$) and $\mathrm{Tl}\left[\mathrm{Tl}\left(\eta-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right] \quad$ (104 mg , 0.192 mmol). The reaction mixture was stirred for 24 h and eluted through a layer of $\mathrm{Al}_{2} \mathrm{O}_{3}(4 \mathrm{~cm})$ by acetone. The solvent was removed in vacuo and the residue was washed by petroleum ether giving complex 1 as a white solid ($50 \mathrm{mg}, 71 \%$). Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{23} \mathrm{~B}_{9} \mathrm{Pt}$: C, 27.57; H, 5.32; B, 22.33. Found: C, 27.35; H, 5.22; B, 22.43\%. ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta=2.44$ (s, $12 \mathrm{H}, \mathrm{Cb}^{*}, J(\mathrm{PtH}) 12$), 3.49 (s, 2H, CH-cage, $J(\mathrm{PtH}) 22) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone $-d_{6}$): $\delta=-24.1(\mathrm{~s}, 1 \mathrm{~B}),-20.9(\mathrm{~s}, 2 \mathrm{~B}),-12.6(\mathrm{~s}, 2 \mathrm{~B}, \mathrm{~J}(\mathrm{PtB}) 101),-10.9(\mathrm{~s}$, 2B), -9.7 ($s, 1 B$), -2.1 ($s, 1 B, J($ PtB) 148).

4.3. Synthesis of [Cb*Pt $\left(\eta-9-\right.$ SMe $\left.\left._{2}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\right] \mathrm{PF}_{6}\left(2 \mathrm{PF}_{6}\right)$

A solution of $\mathrm{Na}\left[9-\mathrm{SMe}_{2}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right.$] in THF (2 ml of a 0.085 M solution, 0.170 mmol) was added to a suspension of complex $\mathrm{Cb}^{*} \mathrm{PtCl}_{2}$ ($52 \mathrm{mg}, 0.139 \mathrm{mmol}$) in THF (4 ml). The reaction mixture was stirred for 24 h . The solvent was removed in vacuo and the solid residue was extracted with water. Then an excess of an aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}$ solution was added. The white precipitate was filtered off, washed with water, and dried in vacuo. Complex $2 \mathrm{PF}_{6}$ was obtained as a white solid ($15 \mathrm{mg}, 17 \%$). Anal. Calc. for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{~B}_{9} \mathrm{~F}_{6} \mathrm{PPtS}$: C, 22.46; H, 4.40; B, 15.16. Found: C, 22.44; H, 4.37; B, $15.11 \% .{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta=2.57$ (s, $12 \mathrm{H}, \mathrm{Cb}^{*}, J(\mathrm{PtH}) 12$), 2.73 ($\mathrm{s}, 3 \mathrm{H}$, SMe_{2}), 2.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SMe}_{2}$), $3.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$-cage, J(PtH) 22), 4.59 (s , $1 \mathrm{H}, \mathrm{CH}$-cage, $J(\mathrm{PtH}) 19) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta=-23.9$ (s, 1B), -21.0 ($s, 1 B$), -20.3 (s, 1B), -13.2 (s, 1B), -11.7 (s, 1B), -10.9 (s, 1B), $-9.8(\mathrm{~s}, 2 \mathrm{~B}, \mathrm{~J}(\mathrm{PtB}) 106),-4.1$ ($\mathrm{s}, 1 \mathrm{~B}, \mathrm{~J}(\mathrm{PtB}) 125)$.

4.4. Synthesis of $\left[\mathrm{Cb}^{*} \mathrm{Pt}\left(\mu-\eta: \eta-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Me}_{2} \mathrm{BMe}\right) \mathrm{FeCp}^{*}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ (3 $\left.\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right)$

$\mathrm{MeNO}_{2}(1 \mathrm{ml})$ was added to $\mathrm{Cb}^{*} \mathrm{PtCl}_{2}(48 \mathrm{mg}, 0.128 \mathrm{mmol})$ and $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$ ($66 \mathrm{mg}, 0.257 \mathrm{mmol}$). The reaction mixture was stirred for ca. 0.5 h and the precipitate of AgCl was centrifuged off. The solution obtained was added to complex $\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Me}_{2} \mathrm{BMe}\right)$ ($40 \mathrm{mg}, 0.129 \mathrm{mmol}$) and the mixture was stirred for 2 h . Ether was added to precipitate brown solid. It was washed by acetone and reprecipitated by ether from MeNO_{2} to give complex $\mathbf{3}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}(20 \mathrm{mg}, 17 \%)$ as a red solid. Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{BF}_{6} \mathrm{FeO}_{6} \mathrm{PtS}_{2}$: C, 36.90 ; $\mathrm{H}, 4.31$. Found: C, 36.74 ; $\mathrm{H}, 4.31 \%$. ${ }^{1} \mathrm{H}$ NMR (nitromethane- d_{3}): $\delta=1.13$ (s, 3H, BMe), 1.80 ($\mathrm{s}, 15 \mathrm{H}$, Cp^{*}), 2.00 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{Cb}^{*}$), 2.39 (s, 6H, Me), 6.13 (d, $2 \mathrm{H}, 3-/ 5-\mathrm{H}$, $J(\mathrm{HH}) 6), 6.31(\mathrm{t}, 1 \mathrm{H}, 4-\mathrm{H}) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (nitromethane- d_{3}): $\delta=11.8(\mathrm{bs}, 1 \mathrm{~B})$.

4.5. Synthesis of $\left[C b^{*} P t\left(\mu-\eta^{5}: \eta^{5}-C_{4} H_{4} B P h\right) R h C p^{*}\right]\left(B F_{4}\right)_{2}\left(4\left(B F_{4}\right)_{2}\right)$

$\mathrm{MeNO}_{2}(1 \mathrm{ml})$ was added to $\mathrm{Cb}^{*} \mathrm{PtCl}_{2}(25 \mathrm{mg}, 0.067 \mathrm{mmol})$ and $\mathrm{AgBF}_{4} \cdot$ 3dioxane ($62 \mathrm{mg}, 0.135 \mathrm{mmol}$). The reaction mixture was stirred for ca. 0.5 h and the precipitate of AgCl was centrifuged off. The solution obtained was added to complex $\mathrm{Cp}^{*} \mathrm{Rh}\left(\eta^{5}-\right.$ $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BPh}$) ($25 \mathrm{mg}, 0.066 \mathrm{mmol}$) and the mixture was stirred for 1 h . Ether was added to precipitate complex $4\left(\mathrm{BF}_{4}\right)_{2}$ which was reprecipitated twice from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by ether. Yield 36 mg (64%) as a red solid. Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~B}_{3} \mathrm{~F}_{8} \mathrm{PtRh} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, $38.14 ; \mathrm{H}$, 4.16. Found: C, 37.97; H, 4.02\%. ${ }^{1} \mathrm{H}$ NMR (nitromethane- d_{3}): $\delta=1.87\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{Cp}^{*}\right), 2.03\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Cb}^{*}\right), 4.87(\mathrm{~m}, 2 \mathrm{H}, 2-/ 5-\mathrm{H})$, 5.98 (m, 2H, 3-/4-H), 7.41 (m, 1H, p-Ph), 7.48 (m, 2H, m-Ph), 7.63 $(\mathrm{m}, 2 \mathrm{H}, o-\mathrm{Ph}) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone $\left.-d_{6}\right): \delta=-0.9\left(\mathrm{~s}, 2 \mathrm{~B}, \mathrm{BF}_{4}\right), 9.6$ (br s, 1B, C $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~B}$).

4.6. X-ray crystallography

Crystals were grown up by slow diffusion in a two-layer system (petroleum ether and a solution of complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for $\mathbf{1}$; ether/ petroleum ether mixture and a solution of complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / MeNO_{2} for $\left.\mathbf{3}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right)$.

The principal crystallographic data, procedures for collecting data, and characteristics of structure refinement are listed in Table 3. Single-crystal X-ray diffraction experiment for $\mathbf{1}$ was carried out with a rebuild Syntex $\mathrm{P} 2_{1} /$ Siemens P3 four-circle diffractometer, using graphite monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$ Å, $\theta / 2 \theta$-scans). Analogous experiment for $\mathbf{3}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ was carried out with a Bruker SMART APEX2 CCD area detector, using graphite monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$, φ and ω scans). The structures were solved by direct method and refined by the full-matrix least-squares against F^{2} in anisotropic (for non-hydrogen atoms). The hydrogen atoms of the BH groups were found in the difference Fourier synthesis. The positions of other hydrogen atoms were calculated from the geometrical point of view and were included in the final refinement using a rigid model. All calculations were performed using the shelxtl software [25]. In the case of $\mathbf{1}$ there is a high positive residual density of 2.15 e \AA^{-3} near the $\operatorname{Pt}(1)$ center (distance $0.82 \AA$) due to considerable absorption effects which could not be corrected.

Acknowledgements

Financial support from the Division of General Chemistry and Material Sciences of RAS is gratefully acknowledged.

Appendix A. Supplementary material

CCDC 686613 and 686614 contain the supplementary crystallographic data for $\mathbf{1}$ and $\mathbf{3}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2008.09.029.

References

[1] (a) P.M. Maitlis, Chem. Soc. Rev. 10 (1981) 1;
(b) R. Poli, Chem. Rev. 91 (1991) 509.
[2] X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, K. Nestor, M. Thornton-Pett, S. Hermanek, T. Jelinek, B. Stibr, J. Chem. Soc., Dalton Trans. (1990) 681.
[3] Z.G. Lewis, A.J. Welch, J. Organomet. Chem. 438 (1992) 353.
[4] A.R. Kudinov, D.S. Perekalin, P.V. Petrovskii, K.A. Lyssenko, G.V. GrintselevKnyazev, Z.A. Starikova, J. Organomet. Chem. 657 (2002) 115.
[5] D.A. Loginov, M.M. Vinogradov, D.S. Perekalin, Z.A. Starikova, K.A. Lyssenko, P.V. Petrovskii, A.R. Kudinov, Izv. Akad. Nauk. Ser. Khim (2006) 81 [Russ. Chem. Bull. 55 (2006) 84 (Engl. Transl.)].
[6] G.E. Herberich, U. Englert, B. Ganter, C. Lamertz, Organometallics 15 (1996) 5236.

7] G.E. Herberich, B. Ganter, Inorg. Chem. Commun. 4 (2001) 100.
[8] D.A. Loginov, D.V. Muratov, P.V. Petrovskii, Z.A. Starikova, M. Corsini, F. Laschi, F.deB. Fabrizi, P. Zanello, A.R. Kudinov, Eur. J. Inorg. Chem. (2005) 1737.
[9] F. Canziani, M.C. Malatesta, J. Organomet. Chem. 90 (1975) 235.
[10] J. Moreto, P.M. Maitlis, J. Chem. Soc., Dalton Trans. (1980) 1368.
[11] (a) F. Canziani, C. Allevi, L. Garlaschelli, M.C. Malatesta, A. Albinati, F. Ganazzoli, J. Chem. Soc., Dalton Trans. (1984) 2637;
(b) M. Gerisch, K. Kirschbaum, C. Bruhn, H. Schmidt, J.A. Davies, D. Steinborn, J. Organomet. Chem. 570 (1998) 129.
[12] G.E. Herberich, U. Englert, F. Marken, J. Chem. Soc., Dalton Trans. (1993) 1979.
[13] Analogous demethylation was observed earlier in reaction of $\left[\left(\eta-C_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ with [9-SMe $\left.2-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right]^{-}$: J.G. Planas, C. Vinas, F. Teixidor, M.B. Hursthouse, M.E. Light, J. Chem. Soc., Dalton Trans. (2004) 2059.
[14] (a) A.R. Kudinov, M.I. Rybinskaya, Yu.T. Struchkov, A.I. Yanovskii, P.V. Petrovskii, J. Organomet. Chem. 336 (1987) 187;
(b) G.E. Herberich, U. Englert, F. Marken, P. Hofmann, Organometallics 12 (1993) 4039;
(c) A.R. Kudinov, A.A. Fil'chikov, P.V. Petrovskii, M.I. Rybinskaya, Izv. Akad. Nauk. Ser. Khim (1999) 1364 [Russ. Chem. Bull. 48 (1999) 1352 (Engl. Transl.)] (d) A.R. Kudinov, M.I. Rybinskaya, Izv. Akad. Nauk. Ser. Khim (1999) 1636;
(e) A.R. Kudinov, D.A. Loginov, Z.A. Starikova, P.V. Petrovskii, M. Corsini, P. Zanello, Eur. J. Inorg. Chem. (2002) 3018.
[15] (a) G.E. Herberich, U. Englert, D. Pubanz, J. Organomet. Chem. 459 (1993) 1; (b) A.R. Kudinov, D.A. Loginov, Z.A. Starikova, P.V. Petrovskii, J. Organomet. Chem. 649 (2002) 136.
[16] (a) G.E. Herberich, B.J. Dunne, B. Hessner, Angew. Chem., Int. Ed. Engl. 28 (1989) 737;
(b) A.R. Kudinov, D.A. Loginov, D.V. Muratov, P.V. Petrovskii, Izv. Akad.. Nauk. Ser. Khim. (2001) 1267 [Russ. Chem. Bull. 50 (2001) 1332 (Engl. Transl.)]; (c) D.V. Muratov, P.V. Petrovskii, Z.A. Starikova, G.E. Herberich, A.R. Kudinov, J. Organomet. Chem. 691 (2006) 3251;
[d] D.A. Loginov, D.V. Muratov, Z.A. Starikova, P.V. Petrovskii, A.R. Kudinov, J. Organomet. Chem. 691 (2006) 3646;
(e) D.A. Loginov, D.V. Muratov, Z.A. Starikova, P.V. Petrovskii, A.R. Kudinov, Izv. Akad. Nauk. Ser. Khim. (2006) 1525 [Russ. Chem. Bull. 55 (2006) 1581 (Engl. Transl.)];
(f) D.A. Loginov, D.V. Muratov, A.R. Kudinov, Izv. Akad. Nauk. Ser. Khim. (2008) 1 [Russ. Chem. Bull. 57 (2008) 1 (Engl. Transl.)].
[17] A.R. Kudinov, E.V. Mutseneck, D.A. Loginov, Coord. Chem. Rev. 248 (2004) 571.
[18] D. Steinborn, M. Gerisch, F.W. Heinemann, J. Scholz, K. Schenzel, Z. Anorg, Allg. Chem. 621 (1995) 1421.
[19] H.M. Colquhoun, T.J. Greenhough, M.G.H. Wallbridge, J. Chem. Soc., Dalton Trans. (1985) 761.
[20] D.M.P. Mingos, M.I. Forsyth, A.J. Welch, J. Chem. Soc., Dalton Trans. (1978) 1363.
[21] H.D. Smith Jr., M.F. Hawthorne, Inorg. Chem. 13 (1974) 2312.
[22] V.I. Meshcheryakov, P.S. Kitaev, K.A. Lyssenko, Z.A. Starikova, P.V. Petrovskii, Z. Janoušek, M. Corsini, F. Laschi, P. Zanello, A.R. Kudinov, J. Organomet. Chem. 690 (2005) 4745.
[23] C. Lamertz, Ph.D. Thesis, RWTH Aachen, Germany, 1996.
[24] M.E. Woodhouse, F.D. Lewis, T.J. Marks, J. Am. Chem. Soc. 104 (1982) 5586.
[25] G.M. Sheldrick, shelxtl-97, Version 5.10, Bruker AXS Inc., Madison, WI, USA, 1997.

[^0]: * Corresponding author. Tel.: +7 499135 9367; fax: +7 4991355085.

 E-mail address: arkudinov@ineos.ac.ru (A.R. Kudinov).

[^1]: ${ }^{1}$ All the cationic complexes described here were isolated as salts with the $\mathrm{PF}_{6}, \mathrm{BF}_{4}$, or $\mathrm{CF}_{3} \mathrm{SO}_{3}$ anions.

